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Part I 

A Review on Recurrent Neural Networks 
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Multi-Layer 

Perceptron (MLP) 
Recurrent Neural 

Network 

Input 

Hidden 

Output 



5 

Recurrent Neural Networks (RNNs) 

The figure from (Sutskever et al., 2011 [1]) 
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Recurrent Neural Networks (RNNs) 

𝑓: 𝑥 1 ,… , 𝑥 𝑡 → 𝑦(𝑡) 

ℎ 𝑡 =  𝜎(𝑊𝑖𝑥 𝑡 +𝑊𝑟ℎ(𝑡 − 1)) 

𝑦 𝑡 =  𝜎(𝑊𝑜ℎ(𝑡)) 

𝑊𝑖 𝑊𝑟 𝑊𝑜 
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Remarks 

• Temporal, sequential model 

• Big degree of freedom on structure 

• Many, many models has been proposed 

• Standard form : Elman network (Elman, 1990 [2]) 

• Training : Any optimization method 
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Why RNNs? 

1. Natural and powerful 

• Natural : Sliding window 

• Powerful : Hidden Markov Model 

 

2. “Something” 

• Most close to real neural networks 

• Many other interpretations 

 



9 

1. Natural and Powerful  

VS Time Window Approach 

• Hand craft window size 

• Dependency longer than window size 

• Multiple time scale dependency 

• Changing dependency (Gers, 2001) 

1 2 3 4 5 6 

1 2 3 4 5 6 

1 2 3 4 5 6 

Window size: 3 
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1. Natural and Powerful  

VS Hidden Markov Model 

• Continuous & combinatorial hidden 

• Bigger memory (ex) counting task 

• PGMs have their own strength 

(Image: http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.html) 

http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.html
http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.html
http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.html
http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.html
http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.html
http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.html
http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.html
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2. “Something” 

• Other possible views on RNNs 

Neuroscience 

Statistical 
Physics 

𝑍 = 𝑒−𝛽𝐸 

Complexity 

Theory of 
Computation 

Dynamic 
Systems 
𝜕𝑦

𝜕𝑡
= 𝑓(𝑦(𝑡)) 

Reinforcement 
Learning 
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Big Questions for RNNs 

Q1. Learning long-term dependency 

• Short-term RNN is meaningless 

• Vanishing gradient (Pascanu et al., 2013 [3]) 

 

Q2. Expressive Power & Structure 

• Is a standard RNN strong enough? 

• If not, what do we need more? 
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Q1 Long-Term Dependency 

NARX 

ESN 

RNNLM 

HF 

NARX RNN 
Nonlinear Autoregressive Models with Exogenous Inputs 

(Lin et al., 1996 [5]) 

u : input, y: hidden 

x : input, h: hidden, y: output 
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Q1 Long-Term Dependency 

NARX RNN 
Nonlinear Autoregressive Models with Exogenous Inputs 

(Lin et al., 1996 [5]) 

Remarks 

• “Skip connection” 

• Manually setting D 

• Similar : Time Delay Neural Networks 

(TDNN, Haffner and Waibel, 1992 [6]) 

NARX 

ESN 

RNNLM 

HF 
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Q1 Long-Term Dependency 

Echo State Network (Jaeger, 2001 [7]) 

Trainable weight 

• “Echo state property” 

- 𝑊𝑟: Sparse random, spectral radius < 1 

• Very robust & long term memory 

• Implicit constraint: 𝐷𝑖𝑚 ℎ ≫ 𝐷𝑖𝑚 𝑥  

- ℎ acts like a kernel 

• Why not optimize? 

NARX 

ESN 

RNNLM 

HF 
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Q1 Long-Term Dependency 

RNN Language Model 
http://rnnlm.org/  

(Mikolov, 2010 [8]) 

• State-of-the-art performance  

• SURPRISING ! 

- The first practical application (non-LSTM) 

- Simple, ordinary Elman RNN 

- Simple, ordinary back-propagation  

𝑥(t) : Language token 

(word, char) 

NARX 

ESN 

RNNLM 

HF 

http://rnnlm.org/
http://rnnlm.org/
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Q1 Long-Term Dependency 

Hessian-Free Optimization 
(Martens and Sutskever, 2011 [9]) 

• Second-order optimization 
 

• May not suffer from 

vanishing gradients 
 

• Beat LSTM, ESN in long-

term memory task 

NARX 

ESN 

RNNLM 

HF 

(Wikipedia) 
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Q2 Structure 

2nd-Order RNN 

ℎ𝑖 𝑡 =  𝜎( 𝑤𝑖𝑗𝑘𝑧𝑗𝑧𝑘
𝑗,𝑘

) 

𝑧𝑗 ∈  ℎ𝑙 𝑡 − 1   ∪  { 𝑥𝑙 𝑡 } 

Comparison : 1st-order RNN 
 

ℎ 𝑡 =  𝜎(𝑊𝑖𝑥 𝑡 +𝑊𝑟ℎ(𝑡 − 1)) 
 

(Goudreau, Giles, et al., 1994 [10]) 
2nd-Order 

Universal? 

MRNN 

DRNN 

DRNN(LISA) 

• Product term 

• Many kinds of possible product exists 
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Is a RNN Powerful Enough? 

• First-order RNN can simulate all 

Turing machines 
 

• Products terms are not needed 
 

• However… 

(Siegelmann and Sontag, 1993 [11]) 

2nd-Order 

Universal? 

MRNN 

DRNN 

DRNN(LISA) 

Q2 Structure 
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Multiplicative RNN 
(Sutskever et al., 2011 [1]) 

• Character-level LM 

• Characters seems to have  

    a multiplicative connection 

• Tensor factorization + HF 

Structure contains prior, and it has 

to be consistent with the data 

2nd-Order 

Universal? 

MRNN 

DRNN 

DRNN(LISA) 

5 days with 8 GPUs… 

Q2 Structure 
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Deep Recurrent Neural Network 
(Hermans and Schrauwen, 2013 [12]) 

• Intuitive, but naïve 

  
• Can be reduced to a 

shallow one 

 

• Not clear what kind of 

prior the structure 

contains 

5 days with 8 GPUs… 

2nd-Order 

Universal? 

MRNN 

DRNN 

DRNN(LISA) 

Q2 Structure 
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2nd-Order 

Universal? 

MRNN 

DRNN 

DRNN(LISA) 

Deep Recurrent Neural Network 
(Pascanu et al., 2014 [13]) 

The “deep connection”  

is multiple non-linear transformation 

• MLP (thus arbitrary transformation)  

   between each layer 

Q2 Structure 
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Summary of the History 

Q1 Can a RNN learn a long-range correlation? 

Q2 Is the structure capable enough? 

Incredible improvements have been made 

Maybe now we can really do something with RNNs 

The Long Short-Term Memory solves 

Q1 and Q2 simultaneously 
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Part II 

Long Short-Term Memory 

(Hochreiter and Schmidhuber, 1997 [14]) 

(Gers, 2001 [4]) 
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Let’s Modify a Hidden Neuron a Little Bit… 

ℎ = 𝑓(𝑛𝑒𝑡) 

𝑛𝑒𝑡 

𝑛𝑒𝑡 = 𝑊𝑖𝑛𝑥(𝑡) +𝑊𝑟ℎ(𝑡) 
𝑓: any non-linearity 

𝜎: sigmoid 

Standard RNN 

𝑛𝑒𝑡𝑜𝑢𝑡 

𝑦𝑜𝑢𝑡 = 𝜎(𝑛𝑒𝑡𝑜𝑢𝑡) 
ℎ × 𝑦𝑜𝑢𝑡 

“output gate” 

Make an “input gate” 

like this 

𝑛𝑒𝑡 

ℎ = 𝑓(𝑛𝑒𝑡) 

Memory block 

Memory cell 
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Constant Error Carousel 
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WHY????????????? 
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1. Stronger Expressive Power 

Constant Error Carousel 

Whether or not to output 

Whether or not to input 
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2. Non-Vanishing Gradient 

Constant Error Carousel 

𝜕𝐸

𝜕𝑤𝑙
=
𝜕𝐸

𝜕𝑠𝑡

𝜕𝑠𝑡
𝜕𝑤𝑙
=
𝜕𝐸

𝜕𝑠𝑡

𝜕𝑠𝑡
𝜕𝑠𝑡−1
…
𝜕𝑠𝑙+1
𝜕𝑠𝑙

𝜕𝑠𝑙
𝜕𝑤𝑙

 

𝜕𝑠𝑡
𝜕𝑠𝑡−1
= 1 

𝜕𝑠𝑙
𝜕𝑤𝑙
= 𝑦𝑙𝑔

′ 𝑛𝑒𝑡𝑙 𝑦
𝑖𝑛 

𝑤𝑙 a input weight at time l 

𝑦𝑙 a input value at time l 
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2. Non-Vanishing Gradient 

O : open gate , ㅡ : closed gate 
(Graves, 2012 [19]) 
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Reber Grammar 

• Input, output dim : 7 

• To predict next possible symbols 
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Continual Reber Grammar 

LSTM fails completely! %Solutions : correct for a whole 

sequence (100,000 symbols) 

%Good : correct > 1000 
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Fail, Why? 

Memory cell activation diverges! 

Then, let it forget! 
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Forget Gate 
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With Forget Gates 
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With Forget Gates 
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Remarks on LSTM 

• Not as messy as it looks (?) 

• One-step computation is expensive (?) 

• A second-order RNN 

• Learning is mainly GD 

• A few algorithm has been proposed 

• Peephole connection is added (Gers et al., 2003 [15]) 

• Design issue 

• A memory block can contain multiple memory cells 

• Not all gates are necessary – Which gates to use? 
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Recent Trends on LSTM 

Alex Graves (at Google DeepMind) 

• Most recent, state-of-the-art LSTM works 

• (http://www.cs.toronto.edu/~graves/ ) 

• Supervised sequence labeling 

 Handwriting recognition / generation 

 Speech recognition (Graves and Jaitly, 2014 [16]) 

 Connectionist Temporal Classification 

 Bidirectional RNN 

 One more : LSTM + Dropout  

                 (Zaremba, Sutskever and Vinyals, 2014 [17]) 

http://www.cs.toronto.edu/~graves/
http://www.cs.toronto.edu/~graves/
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Part III 

Future Research Direction 
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Important Questions 

Q1 So many models. Which one is the best? 

• Theoretical tool? 

Q2 Big model, big data, yet limited 

performance. What should we do more? 

• Maybe need to redefine the problem 

Q3 What other tasks can we do with RNNs? 

 



42 

Reference 

[1] I. Sutskever, J. Martens, and G. E. Hinton. "Generating text with 

recurrent neural networks." ICML-11. 2011. 

[2] J. Elman. "Finding structure in time." Cognitive science. 1990. 

[3] R. Pascanu, T. Mikolov, and Y. Bengio. "On the difficulty of training 

recurrent neural networks." arXiv preprint arXiv:1211.5063. 2012. 

[4] F. Gers. “Long Short-Term Memory in Recurrent Neural Networks”. Ecole 

Polytechnique Federale De Lausanne, PhD thesis. 2001. 

[5] Lin, Tsungnan, et al. "Learning long-term dependencies in NARX recurrent 

neural networks." Neural Networks, IEEE Transactions on. 1996.  

[6] P. Haffner, and A. Waibel. "Multi-state time delay networks for continuous 

speech recognition“. NIPS. 1992. 

[7] H. Jaeger, “The “echo state” approach to analysing and training 

recurrent neural networks”, GMD Technical Report, 2001. 

[8] T. Mikolov, M. Karafiát, L. Burget, J. Èernocký, and S. Khudanpur. 

“Recurrent neural network based language model”. INTERSPEECH 2010. 

[9] J. Martens, and I. Sutskever. "Learning recurrent neural networks with 

hessian-free optimization." ICML-11. 2011. 

[10] M. Goudreau, et al. "First-order versus second-order single-layer 

recurrent neural networks." Neural Networks, IEEE Transactions on. 1994. 



43 

[11] H. Siegelmann, and E. Sontag. "On the computational power of neural 

nets." Journal of computer and system sciences. 1995. 

[12] M. Hermans, and B. Schrauwen. "Training and analysing deep recurrent 

neural networks." NIPS. 2013. 

[13] R. Pascanu, et al. "How to Construct Deep Recurrent Neural Networks." arXiv 

preprint arXiv:1312.6026. 2013. 

[14] S. Hochreiter, and J. Schmidhuber. "Long short-term memory." Neural 

computation. 1997. 

[15] F. Gers, N. Schraudolph, and J. Schmidhuber. "Learning precise timing with 

LSTM recurrent networks." The Journal of Machine Learning Research. 2003.  

[16] A. Graves, and N. Jaitly. "Towards end-to-end speech recognition with 

recurrent neural networks." ICML-14. 2014. 

[17] W. Zaremba, I. Sutskever, and O. Vinyals. "Recurrent Neural Network 

Regularization." arXiv preprint arXiv:1409.2329. 2014. 

[18] Y. Yamashita, and J. Tani. "Emergence of functional hierarchy in a multiple 

timescale neural network model: a humanoid robot experiment." PLoS 

computational biology. 2008. 

[19] A. Graves, ”Supervised sequence labelling with recurrent neural networks”. 

Vol. 385. Springer, 2012. 

 

Reference 



44 

Acknowledgement 

Sang-woo Lee  
• A LOT of discussion 

 

Geonmin Kim (KAIST) 
• Discussion on LSTM 

 

Byoung-Tak Zhang 



Thank You! 


